Cux2 Activity Defines a Subpopulation of Perinatal Neurogenic Progenitors in the Hippocampus
نویسندگان
چکیده
The hippocampus arises from the medial region of the subventricular (SVZ) within the telencephalon. It is one of two regions in the postnatal brain that harbors neural progenitors (NPs) capable of giving rise to new neurons. Neurogenesis in the hippocampus is restricted to the subgranular zone (SGZ) of the dentate gyrus (DG) where it contributes to the generation of granule cell layer (gcl) neurons. It is thought that SGZ progenitors are heterogeneous, differing in their morphology, expression profiles, and developmental potential, however it is currently unknown whether they display differences in their developmental origins and cell fate-restriction in the DG. Here we demonstrate that Cux2 is a marker for SGZ progenitors and nascent granule cell neurons in the perinatal brain. Cux2 was expressed in the presumptive hippocampal forming region of the embryonic forebrain from E14.5 onwards. At fetal stages, Cux2 was expressed in early-forming Prox1(+) granule cell neurons as well as the SVZ of the DG germinal matrix. In the postnatal brain, Cux2 was expressed in several types of progenitors in the SGZ of the DG, including Nestin/Sox2 double-positive radial glia, Sox2(+) cells that lacked a radial glial process, DCX(+) neuroblasts, and Calretinin-expressing nascent neurons. Another domain characterized by a low level of Cux2 expression emerged in Calbindin(+) neurons of the developing DG blades. We used Cux2-Cre mice in genetic fate-mapping studies and showed almost exclusive labeling of Calbindin-positive gcl neurons, but not in any progenitor cell types or astroglia. This suggests that Cux2(+) progenitors directly differentiate into gcl neurons and do not self-renew. Interestingly, developmental profiling of cell fate revealed an outside-in formation of gcl neurons in the DG, likely reflecting the activity of Cux2 in the germinative matrices during DG formation and maturation. However, DG morphogenesis proceeded largely normally in hypomorphic Cux2 mutants lacking Cux2 expression. Taken together we conclude that Cux2 expression reflects hippocampal neurogenesis and identifies non-self-renewing NPs in the SGZ.
منابع مشابه
Cux2 (Cutl2) integrates neural progenitor development with cell-cycle progression during spinal cord neurogenesis.
Neurogenesis requires the coordination of neural progenitor proliferation and differentiation with cell-cycle regulation. However, the mechanisms coordinating these distinct cellular activities are poorly understood. Here we demonstrate for the first time that a Cut-like homeodomain transcription factor family member, Cux2 (Cutl2), regulates cell-cycle progression and development of neural prog...
متن کاملFezf2 Expression Identifies a Multipotent Progenitor for Neocortical Projection Neurons, Astrocytes, and Oligodendrocytes
Progenitor cells in the cerebral cortex sequentially generate distinct classes of projection neurons. Recent work suggests the cortex may contain intrinsically fate-restricted progenitors marked by expression of Cux2. However, the heterogeneity of the neocortical ventricular zone as well as the contribution of lineage-restricted progenitors to the overall cortical neurogenic program remains unc...
متن کاملThe Effect of Pre-Conditioning Endurance Training on Neurogenic and Anti-Neurogenic Factor in Hippocampus of Male Rats Following Ischemic Reperfusion
Introduction: Binding of mature brain derived neurotrophic factor (BDNF) to tyrosine kinase B (TrkB) receptor leads to cell survival, while proBDNF binding to p75 receptor leads to cell death. Thus the aim of the present study was to investigate the effects of eight weeks pre-conditioning endurance training on BDNF, TrkB, proBDNF and p75 levels in the hippocampus male rats following ischemic re...
متن کاملComputational Pattern Separation Models of Dentate Gyrus Neural Subpopulation in the Hippocampus
Hippocampus is a part of the brain that has an essential role in memory and learning. It is involved in many cognitive and behavioral phenomena, including the pattern separation process: the ability to distinguish patterns with very high similarity. The present study compared the models of pattern separation in the dentate gyrus of the hippocampus and aimed to investigate the significant cel...
متن کاملCux2-Positive Radial Glial Cells Generate Diverse Subtypes of Neocortical Projection Neurons and Macroglia
We recently published genetic lineage-tracing experiments using the Fezf2 and Cux2 loci. These experiments demonstrated that at both the clonal and population levels Fezf2(+) RGCs are multipotent and that at the population level Cux2(+) RGCs are multipotent. Here, we extend our work on the lineages of Fezf2(+) and Cux2(+) RGCs. Clonal analysis of E10.5 neocortical progenitors suggests that most...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 25 شماره
صفحات -
تاریخ انتشار 2015